

Matteo Matteucci, matteo.matteucci@polimi.it

About myself

- Associate professor at Politecnico di Milano
 - Robotics
 - Cognitive Robotics
 - Machine Learning
- Main research interests
 - Robot vision/perception
 - Machine learning
 - Benchmarking and performance evaluation

Why Benchmarking?

• Robocup Lisbon 2004 (left), Bremen 2006 (right)

We need a Benchmark ...

- 'Defining a standard benchmark for mobile service robots' (The RoSta wiki 2008)
 - Benchmark:
 - A standard by which something is evaluated or measured
 - A surveyor's mark made on some stationary object and shown on a map as a reference point
 - Benchmarking:
 - To measure the performance of an item relative to another similar item in an impartial scientific manner. (http://en.wiktionary.org/wiki/benchmark)

Good Experimental Methodologies

- "General Guidelines for Robotics Papers using Experiments" (March 2008 DRAFT)
 - Is it an experimental paper?
 - Are the system assumptions/hypotheses clear?
 - Are the performance criteria spelled out explicitly?
 - What is being measured and how?
 - Do the methods and measurements match the criteria?
 - Is there enough information to reproduce the work?
 - Do the results obtained give a fair and realistic picture of the system being studied?
 - Are the drawn conclusions precise and valid

Experiences to imitate

- Other fields in Computer Science had paved the way:
 - Machine Leaning @ UCI
 - Stereo vision @ Middlebury
 - Performance Evaluation of Tracking and Surveillance
 - PASCAL (object recognition database)
 - •

Experiences to imitate

- Other fields in Computer Science had paved the way:
 - Machine Leaning @ UCI
 - Stereo vision @ Middlebury
 - Performance Evaluation of Tracking and Surveillance
 - PASCAL (object recognition database)
 - •

Experiences to imitate

- Other fields in Computer Science haD paved the way:
 - Machine Leaning @ UCI
 - Stereo vision @ Middlebury
 - Performance Evaluation of Tracking and Surveillance
 - PASCAL (object recognition database)

•

Here it comes RAWSEEDS

- EU Funded Project in the VI Frame Program (1st November 2006 to July 2009)
- A Specific Support Action to collect and publish a (S)LAM benchmarking toolkit
- Involved Institutions:
 - Politecnico di Milano (Italy Coordinator)
 - Università di Milano-Bicocca (Italy Partner)
 - University of Freiburg (Germany Partner)
 - Universidad de Zaragoza (Spain Partner)

Why Benchmarking SLAM?

- Benchmarking of a robotic application might be complex and hard to tackle as a whole
- The SLAM community was already establishing a "dataset" culture for algorithms evaluation
- Simultaneous Localization And Mapping could have been one of the easiest activity to benchmark in robotics ...
 - We can establish proper metrics for SLAM
 - The community agrees on the use of such metrics
 - The community appreciate the effort for using it
 - ...

What about simulation?

- "Towards Quantitative Comparisons of Robot Algorithms: Experiences with SLAM in Simulation and Real World Systems" (Balaguer et al. Benchmarking @ IROS 2007)
 - Simulators can be available for free (almost)
 - Ground Truth is perfect and easy to collect;-)
 - Experiments are "easy" to replicate
- Seems the solution for benchmarking problems, "however real life differs from simulation"
- Useful in the lifecycle of a scientific idea, but robots eventually get real ...

Benchmarking Beyond Radish

- RAWSEEDS toolkit fosters publishing of:
 - Extended multi-sensor data sets for the testing of systems on real-world scenarios from different sensor perspectives
 - Benchmarks and methodologies for quantitative evaluation and comparison of algorithms (and eventually sensors)
 - Off-the-shelf algorithms, with demonstrated performances, to be used for bootstrapping and comparison.

www.rawseeds.org

RAWSEEDS Sensor Suite

- Use of an extensive sensing suite
 - B/W + Color cameras (moncular)
 - Stereo cameras (SVS by Videre)
 - LRFs (SICK 2D & Hokuyo)
 - Omnidirectional camera (V-Stone)
 - GPS and RTK-GPS (Outdoor GT)
 - Other proprioceptives (e.g., odometry, Inertial Measurement Unit)
- Sensors synchronized and acquired at maximum frequency allowed by onboard PCs

Issue #1: Design of the Datasets

- Defined relevant scenarios beforehand
 - Indoor scenarios: offices, halls, corridors, flat and non-flat walls, doors & passages, windows, horizontal floors, ramps, stairs, elevators, and several pieces of furniture.
 - Outdoor scenarios where the robot moves in the open between buildings and the obstacles are comparable with those found along urban roads.
 - Mixed scenarios with parts surrounded by walls and parts located in the open.
- Different acquisition setups
 - Static and Dynamic environments (i.e., people wlaking around)
 - Different lighting conditions (i.e., natural daylight & artificial light)

Indoor Locations in Bicocca

Outdoor and Mixed Locations in Bovisa

11 Datasets Collected

- Indoor
 - 1 static lamps + 1 static daylight
 - 1 dynamic lamps + 2 dynamic daylight
- Outdoor:
 - 2 static + 1 dynamic
- Mixed:
 - 2 static + 1 dynamic

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - LASERS checked for overlap

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - SONAR checked by visual inspection

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - SONAR checked by visual inspection
 - MONOCULAR checked for features

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - SONAR checked by visual inspection
 - MONOCULAR checked for features
 - TRINOCULAR checked also for calibration

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - SONAR checked by visual inspection
 - MONOCULAR checked for features
 - TRINOCULAR checked also for calibration
 - PANORAMIC checked for features and sync

- Independent evaluation of the datat quality by Zaragoza partner
 - IMU used as time reference
 - ODOMETRY checked for delays
 - SONAR checked by visual inspection
 - MONOCULAR checked for features
 - TRINOCULAR checked also for calibration
 - PANORAMIC checked for features and sync
 - GPS checked for quality and coverage

Issue #3: How do we evaluate SLAM?

- A SLAM benchmark needs to asses the performance of a SLAM algorithm
 - Quantitative measures of map/path quality, w.r.t. ground truth
 - Performance variation as map size grows
 - How realistic/pessimistic/optimistic is the estimation error
 - Large loop recognition and closure
 - •
- Clearly no single measure, we need a set of measures + ground truth!

A Trick for Generating Ground Truth

- "Benchmarking Urban 6D SLAM" (Wulf et al. Benchmarking Workshop @ IROS 2007)
 - Highly accurate RTK-GPS receivers can not be used in outdoor urban areas
 - Surveyed maps can be obtained from the national land registry offices
 - Monte Carlo Localization can be used with such accurate maps to estimate ground truth positioning from the data and a manual supervision step to validate the MCL results.

• Isn't there a solution which does not uses the data itself?

RAWSEEDS Ground Truth Setup

- Two GT Collection Systems
 - Outdoor: RTK (Real Time Kinematic) GPS
 - Indoor: vision-based (GT-vision) and LRF-based (GT-laser)

Outdoor GT: RTK GPS

- Two GPS receivers (fixed + mobile)
- Radio link between the receivers
- Pros: no drift, (somehow) easy setup, high positioning precision
- Cons: does not operate indoors, costly hardware extremely sensible to obstacles, performance varies widely over time and space

Outdoor GT: RTK GPS

- Two GPS receivers (fixed + mobile)
- Radio link between the receivers
- Pros: no drift, (somehow) easy setup, high positioning precision
- Cons: does not operate indoors, costly hardware extremely sensible to obstacles, performance varies widely over time and space

Vision and Laser Indoor GT System

• Use a camera network to localize the robot

• Good: Independent sensor

• Bad: Requires (painful) setup/calibration

• Doubt: Might not be accurate enough

Vision and Laser Indoor GT System

- Use a camera network to localize the robot
 - Good: Independent sensor
 - Bad: Requires (painful) setup/calibration
 - Doubt: Might not be accurate enough
- Improve accuracy by an (offboard) laser system
 - 4 sick laser-scanners in the Vision GT are
 - robot localization with ICP in the overall scan

Issue #3.1: Indoor GT Systems Alignment

Issue #3.2: Indoor GT Validation

Issue #3.2: Indoor GT Validation

Issue #3.2: Indoor GT Validation

- Vision GT
 - 112 ± 90mm in position
 - -0.8 ± 2.16 degs in orientation
- Laser GT
 - 20 ± 11mm in position
 - 0.15 ± 1.56 degs in orientation
- Overall Accuracy
 - 19 ± 11mm in position
 - -0.12 ± 1.56 degs in orientation

Issue #4: Is it any useful?

- Ready to use solutions from the partner used to validate the benchmark
 - Laser Based

Scan-matching [ALUFR]

Rao-Blackwellized Particle Filters [ALUFR]

• Graph-based SLAM [ALUFR]

Vision Based

Monocular and Stereo SLAM [UNIZAR]

Trinocular SLAM [UNIMIB + POLIMI]

Laser Based SLAM (indoor)

• Map ground truth obtained by manual aligment (left) and odometry (right)

Laser Based SLAM (indoor)

• Metrics capture the expected improvements (vasco, rbpf, graph-mapper)

Laser Based SLAM (outdoor)

• Map ground truth obtained by manual aligment (left) and odometry (right)

Laser Based SLAM (outdoor)

• Metrics capture the expected improvements (vasco, rbpf, graph-mapper)

Laser Based SLAM (mixed)

• Map ground truth obtained by manual aligment (left) and odometry (right)

Laser Based SLAM (mixed)

• Metrics capture the expected improvements (vasco, rbpf, graph-mapper)

Monocular SLAM

Monocular SLAM Results

- 153m trajectory (5400 frames), 650m trajectory (24180 frames)
 - Low error (\sim 1% of the trajectory)
 - Longest trajectories ever using filtering-based visual estimation
 - Near real-time processing (~1 second per frame)
 - Efficient spurious search based on RANSAC

Conclusions & Seeds for Discussion

- The RAWSEEDS benchmarking toolkit still available!
 - Multisensorial datasets with ground truth
 - Well defined benchmarks with metrics
 - Off-the shell solutions to compare with
- What's after RAWSEEDS?
 - More solutions were expected!
 - More problems were welkome!
 - Different uses for the same data
 - More datasets
 - One platform is there, but collection costs!
 - Other platform datasets (e.g., UAV, cars, ...)
- SLAM is a small step, let's benchmark systems and control loops ...

